Intra-tumoral dendritic cells increase efficacy of peripheral vaccination by modulation of glioma microenvironment.
نویسندگان
چکیده
Pilot data showed that adding intratumoral (IT) injection of dendritic cells (DCs) prolongs survival of patients affected by glioblastoma multiforme (GBM) treated by subcutaneous (SC) delivery of DCs. Using a murine model resembling GBM, we investigated the immunological mechanisms underlying this effect. C57BL6/N mice received brain injections of GL261 glioma cells. Seven days later, mice were treated by 3 SC injections of DCs with or without 1 IT injection of DCs. DC maturation, induced by pulsing with GL261 lysates, was necessary to develop effective immune responses. IT injection of pulsed (pDC), but not unpulsed DCs (uDC), increased significantly the survival, either per se or in combination with SC-pDC (P < .001 vs controls). Mice treated by IT-pDC plus SC-pDC survived longer than mice treated by SC-pDC only (P = .03). Injected pDC were detectable in tumor parenchyma, but not in cervical lymph nodes. In gliomas injected with IT-pDC, CD8+ cells were significantly more abundant and Foxp3+ cells were significantly less abundant than in other groups. Using real-time polymerase chain reaction, we also found enhanced expression of IFN-gamma and TNF-alpha and decreased expression of transforming growth factor-beta (TGF-beta) and Foxp3 in mice treated with SC-pDC and IT-pDC. In vitro, pDC produced more TNF-alpha than uDC: addition of TNF-alpha to the medium decreased the proliferation of glioma cells. Overall, the results suggest that IT-pDC potentiates the anti-tumor immune response elicited by SC-pDC by pro-immune modulation of cytokines in the tumor microenvironment, decrease of Treg cells, and direct inhibition of tumor proliferation by TNF-alpha.
منابع مشابه
Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways.
We tested whether modulation of the CNS-tumor microenvironment by delivery of IFN-alpha-transduced dendritic cells (DCs: DC-IFN-alpha) would enhance the therapeutic efficacy of peripheral vaccinations with cytokine-gene transduced tumor cells. Mice bearing intracranial GL261 glioma or MCA205 sarcoma received peripheral immunizations with corresponding irradiated tumor cells engineered to expres...
متن کاملInduction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells
Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...
متن کاملEXPERIMENTAL STUDY 7-Hydroxystaurosporine-induced Apoptosis in 9L Glioma Cells Provides an Effective Antigen Source for Dendritic Cells and Yields a Potent Vaccine Strategy in an Intracranial Glioma Model
OBJECTIVE: On the basis of recent studies indicating that tumoral apoptotic bodies may provide a potent source of antigen for delivery to antigen-presenting cells, as well as observations that signal transduction modulation may constitute a promising approach for inducing glioma cell apoptosis, we explored the efficacy of vaccination with glioma apoptotic body-pulsed dendritic cells (DCs) for i...
متن کاملO24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملCCR Translations Enhancing Cancer Vaccine Efficacy via Modulation of the Tumor Microenvironment
The development of therapeutic cancer vaccines is impacted by immunosuppressive elements in the tumor microenvironment. Most immunogenic cancer proteins are “self,” therefore, peripheral tolerance contributes substantially to tumor immune escape. Transforminggrowth factorβ (TGFβ) activelymodulatesboth inflammationand tolerance induction. Combining vaccination with agents that disarm TGFβ will e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-oncology
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2010